
1 Related Rates Notes Chloe Urbanski

These notes are designed to supplement Calculus: Early Transcendentals, the third edition, by

Rogawski and Adams. Calculus 1 students tend to have a lot of trouble with related rates, so I’ve

written these notes in an attempt to simplify the topic. The algorithm outlined in these notes is

not the only way to go about these problems, nor is it a standard step-by-step process used by

other instructors or Mathematicians. It is merely an outine of my own mental process when

solving a related rates problem. My hope is that by writing down the steps I take explicitly, I can

make the process more clear to students who are having trouble.

1 The Procedure

1.1 Step 1: Draw a Picture

When solving a related rates problem, we are almost always modeling some change happening in

the world around us. As a result, it is often extremely helpful to draw a picture. If you do, you

should always remember to label your diagram with variables (some of which may be filled in

with constants in step 3).

This step is not always absolutely necessary, however. In fact, it may sometimes be impossible,

for example if you are modeling some physical phenomenon that you are given the equation for

(see example 3).

1.2 Step 2: Write Down an Equation (or two)

Eventually, we will be taking derivatives. Therefore, we need an equation to take a derivative of.

If you’ve drawn a picture, the equation will likely come from that picture. In some cases, the

problem gives you the equation outright. This is often the case if you are modeling a physical

phenomenon (see example 3).

1.3 Step 3: Write Down What is Constant

While related rates problems are all about things changing (and the rates at which they change),

there are likely values in the problem which remain constant. We want to plug these numbers into

our equation before we take our derivative. Note that at this point, the only values you should be

plugging in are constants. You do not plug in any values that are at a specific point in time. This

is most easily explained in examples, so I’ll repeat this point in example 1.

1.4 Step 4: Take a Derivative

Now that we have an equation with all of our constants plugged in, we can take a derivative.

Don’t forget that we are taking d
dt , so we have to use implicit differentiation.
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1.5 Step 5: Plug in Values and Solve

The ultimate question to these types of problems is nearly always something along the lines of

”What is the rate of when x= ?” This is where we plug in those values. We also

plug in the values of the rates that we know. Sometimes, you may need to use a secondary

equation or go back to the original equation in order to find all of the necessary values. Once we

have all of those plugged in, all we need to do is solve for what we want.

Let’s start doing some examples!

2 Example 1: The Standard ”Sliding Ladder” Problem

Suppose a 10 foot ladder is leaning against a wall. The top of the ladder is sliding down the wall

at a rate of 0.5 feet per second. At what rate is the foot of the ladder sliding away from the wall,

when the top of the latter is 6 feet above the floor?

2.1 Step 1: Draw a Picture

Walls are always at right angles with the floor (we like structurally sound buildings). Since the

ladder has to touch both the floor and the wall, it appears we have a right triangle.

Figure 1

2.2 Step 2: Write Down an Equation or Two

Since walls and floors meet at right angles, we have a right triangle. Since this problem is asking

about lengths of sides of our triangle, we use the Pythagorean Theorem.

w2 + h2 = L2
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2.3 Step 3: Write Down What is Constant

In this problem, we have a fixed ladder whose height is always 10. Therefore, L is constant and

we can plug in L = 10 to our equation.

w2 + h2 = 102 = 100

Something to note here: the problem asks us to find a rate when h = 6. However, h is changing

throughout the problem. So, we don’t want to plug that in until after we take a derivative.

2.4 Step 4: Take a Derivative

We now take d
dt of both sides of the equation we found in step 3, using implicit differentiation.

d
dt(w

2 + h2) = d
dt(100)

2w dw
dt + 2hdhdt = 0

2.5 Step 5: Plug in Values and Solve

We want to solve for dw
dt when h = 6. Looking at our equation, we need to know dh

dt and w at this

point as well. We are given dh
dt = −0.5 in the problem statement (where the negative is due to the

fact that the height on the wall is shrinking). But where are we going to get w? Well, lets look at

our original equation:

w2 + h2 = 100

Since we know what h is, we can use the above equation to find w.

w2 + 62 = 100

w2 = 64

w = 8

One little note to be aware of: generally, when we take a square root, we have to take the

positive and negative roots. However, in this problem, w is a length. Therefore, it must always be

positive. So, we only need the positive square root.

Now that we know all of the necessary values, we can find our final answer:

2w dw
dt + 2hdhdt = 0

2(8)dwdt + 2(6)(−0.5) = 0

16dwdt = 6
dw
dt = 3

8

So, when the top of the ladder is 6 feet above the floor, the base of the ladder is sliding away

from the wall at a rate of 3
8 feet per second.
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3 Example 2:

3.1 Problem

Suppose I have a conical tank, such as the one in figure 2 below. There is water flowing into the

top of the tank at a rate of π cm3/s. If the radius of the cone is three times the height, how fast is

the height of the water increasing when there are 24π cm3 of water in the tank?

Figure 2

From this point on, I will not separate the problem into steps.

3.2 Solution

First, I begin with the figure given and add labels and variables, as shown in Figure 3 below.

Figure 3

Then, I make the following definitions for my variables:

h = the height of the water in the tank

r = the radius of the surface of the water in the tank

V = the volume of the water in the tank.
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From geometry, we know what the formula for volume of a cone is:

V = πr2 h3

We are also given in the problem that r = 3h. We can either plug this in now and then take a

derivative, or take a derivative of both equations and then make our substitutions. Either option

will get you to the correct answer. Note that if I leave both r and h in my equation for volume,

I’ll have to use product rule. So, I’ll make the substitution now in order to make my computation

easier.

V = πr2 h3
= π(3h)2 h3
= 3πh3

Now, we can take d
dt of both sides.

dV
dt = 9πh2 dhdt .

The problem now wants to know what dh
dt is when V = 24π. The problem told us that dV

dt = π,

but we also need to know h. We can go back to our formula for volume, plug in V = 24π, and

solve for h:

h = 3

√
V
3π

= 3

√
24π
3π

= 3
√

8

= 2

We can now plug this in to our derivative and solve for our desired value.

dh
dt =

dV
dt

9πh2

= π
9π22

= 1
36

Therefore, the height of the water is increasing at a rate of 1
36 cm/s when the volume is π cm3.

4 Example 3: Ideal Gas Law

4.1 Problem

Recall from general chemistry the ideal gas law:

PV = nRT
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where P stands for pressure (in pascals), V stands for volume (in m3), n is the amount of

substance (in moles), R = 8.314 is a constant known as Avogadro’s constant, and T is

temperature (in kelvins).

1. Suppose I have a solid box (whose volume does not change) and a fixed amount of some gas

inside of that box. Suppose that when the temperature inside the box is 10K, the pressure

is 2Pa.

Now, I put the box over a Bunsen burner and increase the temperature at a rate of 3K/s. Is

the pressure increasing or decreasing? At what rate?

2. Now, suppose my box is made out of an elastic material and can therefore change in

volume. When the temperature is 10K, the pressure is 6Pa and the volume is 5m3. As the

tempurature increases at a rate of 20K/s, the pressure increases at a rate of 0.6Pa/s. When

the temperature reaches 30K and the pressure reaches 9Pa, is the volume increasing or

decreasing? At what rate?

4.2 Solution

(a) I first begin by rearranging the ideal gas law to reflect the information given:

P = nR
V T .

Since my volume doesnt change and I have a fixed amount of gas, I know that nR
V is a constant:

P = nR
V T

2 = nR
V 10

nR
V = 5.

Therefore, my equation becomes

P = 5T .

Taking d
dt of both sides, I obtain

dP
dt = 5dTdt .

Now, substituting in dT
dt = 3, I see that dP

dt = 15. Therefore, the pressure is increasing at a rate

of 15Pa/s.

(b) In this problem, volume is allowed to change, but I still have a fixed amount of gas in my

container. So, nR is a constant:
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PV = nRT

(6)(5) = (nR)(10)

30 = (nR)10

3 = nR.

Therefore, my equation is

PV = 3T .

I can now take d
dt of both sides. Since both pressure and volume change over time, I must use

product rule to take my derivative:

P dV
dt + V dP

dt = 3dTdt .

I want to know dV
dt at a particular time. The problem gives me values for dP

dt , dT
dt , P , and T . In

order to find V to plug into the derivataive, I must go back to my original equation:

V = 3T
P

= 3(30)
9

= 10

Now, I can plug everything into the derivative and solve.

(9)dVdt + (10)(0.6) = 3(20)

9dVdt = 60− 6
dV
dt = 54

9 = 6

Therefore, when the temperature reaches 30K and the pressure reaches 9Pa, the volume is

increasing at a rate of 6m3/s.
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